ON BANACH LATTICES OF OPERATORS

BY PETER ØRNO

ABSTRACT

Let Λ_1 and Λ_2 be infinite-dimensional Banach lattices such that c_0 is not finitely representable in Λ_2 . Then the bounded linear operators from Λ_1 to Λ_2 form a lattice if and only if Λ_1 is an abstract AL space.

In [2], Fremlin showed that a Banach lattice Λ is isomorphic to an AL-space (see, e.g. [1]) if every compact linear operator $T:\Lambda\to l_1$ is the difference of two positive operators. The purpose of this note is to prove the following extension of Fremlin's result: If Λ_1 and Λ_2 are infinite dimensional B - lattices such that every operator in the uniform closure $\mathcal{F}(\Lambda_1,\Lambda_2)$ of the finite rank operators from Λ_1 to Λ_2 splits by T=P-N with P and N positive, and if Λ_2 does not contain (uniformly) copies of l_{∞}^2 , then Λ_1 is isomorphic (linear, order and norm) to an AL-space. The basic technique is Fremlin's. The new parts of the proof are based on some inequalities due to Tzafriri [5]. This result is suggested by a well known result (see, e.g. [4, p. 174]) that every operator from an AL-space to a B-lattice not containing c_0 split (as above).

We now proceed to the proof of the main result.

Notice first that since $T \in \mathcal{F}(\Lambda_1, \Lambda_2)$ can be written as T = P - N, we may define |T| on positive elements x of Λ_1 by the formula $|T|x = v\{Ty \mid -x \leq y \leq x\}$. In fact, for any $x \geq 0$ in Λ_1 , and any $|y| \leq x$, $Ty = Ty^+ - Ty^- \leq Py^+ + Ny^- \leq Px + Nx$, so that |T|x exists by the order completeness of Λ_2 [3]. It is also clear that $||T|| \leq ||T|| = ||T|| =$

closed. This is obvious since this ball is the intersection of the family of all closed sets of the form $\{S | \| \vee_{i-1}^n S y_i \| \le 1\}$ where $\vee_{i-1}^n |y_i| \le |x|$ for some $x, \|x\| \le 1$.

Next, according to Tzafriri, there is an $\alpha > 0$ such that for any n, there exist e_1, \dots, e_{2^n} , non-negative, disjoint, normalized elements of Λ_2 such that the Rademacher elements over $(e_i)_{i=1}^{2^n}$

$$r_{1} = \left\{ \sum_{i=1}^{2^{n-1}} e_{i} - \sum_{i=2^{n-1}+1}^{2^{n}} e_{i} \right\} / \left\| \sum_{i=1}^{2^{n}} e_{i} \right\|, \dots,$$

$$r_{n} = \left\{ \sum_{i=1}^{2^{n}} (-1)^{i+1} e_{i} \right\} / \left\| \sum_{i=1}^{2^{n}} e_{i} \right\|$$

satisfy, for a_1, \dots, a_n arbitrary, $\|\Sigma_{i=1}^n a_i r_i\| \le \alpha (\sum a_i^2)^{1/2}$. Let f_1, \dots, f_n be positive disjoint elements of Λ_1 and define $T: \Lambda_1 \to \Lambda_2$ by $Tx = \sum f_i(x) r_i$. It is readily checked that for $x \ge 0$, one has $|T|x \ge \sum f_i(x)|r_i|$ so that $||T|x|| \ge \sum f_i(x)$. In particular, we have $||\sum f_i|| \le ||T||| \le K ||T||$. On the other hand, $|Tx|| \le \alpha (\sum f_i(x)^2)^{1/2}$ for any x, so that

$$\|\Sigma f_i\| \leq K\alpha \sup_{\|x\| \leq 1} (\Sigma f_i(x)^2)^{1/2}$$

$$= K\alpha \sup_{\|x\| \leq 1} ((\Sigma f_i(x)f_i)x)^{1/2} \leq K\alpha \sup_{\|x\| \leq 1} \|\Sigma f_i(x)f_i\|^{1/2}$$

$$\leq K\alpha \sup_{1 \leq i \leq n} (\|f_i\| \|\Sigma f_i\|)^{1/2} \text{ and hence}$$

$$\|\Sigma f_i\| \leq (K\alpha)^2 \sup_{1\leq i\leq n} \|f_i\|.$$

Now renorm Λ_1 by $|||x||| = \sup \{ \sum ||x_i|| |x = \sum x_i, |x_i| \wedge |x_j| = 0 \text{ when } i \neq j \}$. Then $(\Lambda_1, ||| \cdot |||)$ is an AL - space equivalent to $(\Lambda_1, ||\cdot||)$ by (*). This completes the proof.

REFERENCES

- 1. M. M. Day, Normed Linear Spaces, third edition, New York, Heidelberg, Berlin, 1973.
- 2. D. H. Fremlin, A characterization of L-spaces, Indag. Math. 36 (1974), 270-275.
- 3. P. Meyer-Nieberg, Charakterisierung einiger topologischer und ordnungstheoretischer Eigenschäften von Banachverbänden mit Hilfe disjunkter Folgen, Arch. Math. 24 (1973), 640-647.
 - 4. A. L. Peressini, Ordered Topological Vector Spaces, New York, 1967.
 - 5. L. Tzafriri, On spaces with unconditional basis, Israel J. Math. 17 (1974), 84-93.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
COLUMBUS, OHIO 43210 U.S.A